Rivista di formazione e di aggiornamento professionale del pediatra e del medico di base, realizzata in collaborazione con l'Associazione Culturale Pediatri

M&B Pagine Elettroniche

Pillole di statistica

Specchio specchio delle mie brame...dimmi quanti pazienti dovrò arruolare?

Daniele Radzik
UO di Pediatria Ospedale San Giacomo Castelfranco Veneto (TV)
Indirizzo per corrispondenza: dradzik@tiscali.it


Valutando gli esiti di uno studio clinico dobbiamo sempre tenere presente la possibilità che gli Autori siano giunti a dei risultati errati principalmente per due ragioni:

  1. i ricercatori possono aver concluso che due trattamenti sono differenti tra di loro quando, in effetti, non lo sono, compiendo unerrore di tipo I o alfa (questo tipo di errore misura la probabilità di arrivare a delle conclusioni falsamente positive). Convenzionalmente si cerca di ridurre la probabilità che esso si verifichi al di sotto del 5% (p <0.05);
  2. i ricercatori possono aver concluso che due trattamenti non sono differenti quando, in effetti lo sono, compiendo un errore di tipo II o beta (questo tipo di errore misura la probabilità di giungere a delle conclusioni falsamente negative); anche in questo caso è stato posto arbitrariamente il limite del 20% di probabilità con la quale si desidera evitare di compiere un tale errore (β <0.20).
Matematicamente il potere di uno studio è il complemento dell'errore di tipo β (1- β) e rappresenta la probabilità di evitare una conclusione falsamente negativa. In altre parole è la probabilità pre-studio che la ricerca sia in grado di identificare (per un dato livello di significatività, per es. p<0.05) una differenza minima considerata dagli Autori come clinicamente significativa.
Il potere deve essere calcolato prima dell'inizio dello studio e serve per stabilire la numerosità campionaria.
Ma dato queste premesse, come possiamo accorgerci se uno studio ha arruolato un numero sufficientemente ampio di pazienti?
Per prima cosa osserviamo gli Intervalli di Confidenza (IC) presenti nell'articolo.

Intervalli di Confidenza, significatività statistica e clinica
Bisogna considerare che i ricercatori non sono in grado di coinvolgere nel loro trial tutta la popolazione disponibile, ma solo un suo campione rappresentativo: i risultati trovati non esprimono con sicurezza dunque il vero valore della popolazione, ma solo una sua stima, per giunta imprecisa. Il grado di incertezza è ben rappresentato dagli Intervalli di Confidenza (IC), che dovrebbero sempre essere associati ai dati e che costituiscono il range dei possibili veri valori dell'intera popolazione nel 95% dei casi; più ampi essi sono, più i risultati saranno imprecisi e maggiore sarà la confidenza che lo studio sia in realtà troppo “piccolo” per individuare delle differenze; più grande è invece lo studio, più piccolo sarà probabilmente l'errore compiuto e più preciso il risultato: ecco che studi di grande numerosità possono perciò raggiungere facilmente una significatività statistica.
Per giudicare se un intervento sia veramente utile, non ci si deve limitare a osservare la sola significatività statistica, ma è necessario verificare anche che il range (IC 95%) delle possibili differenze riscontrato fra i due gruppi (di solito attivo e placebo) includa soltanto effetti clinicamente importanti. La Figura 1 dimostra come la posizione degli IC 95% (relativamente alla linea dell'ipotesi nulla di nessuna differenza fra i due trattamenti e alla linea dell'importanza clinica) chiarisca bene l'effetto della terapia in termini di significatività statistica e clinica: idealmente un trattamento per essere raccomandato deve essere sia statisticamente che clinicamente significativo (gli Intervalli di Confidenza al 95% devono includere cioè valori situati sempre al di sopra della linea di importanza clinica).


Figura 1. Distinzione fra significatività statistica e importanza clinica


Legenda: le barre verticali rappresentano gli Intervalli di Confidenza al 95% intorno alle differenze fra il trattamento e il controllo.
Sull'asse delle ordinate sono registrati i valori delle differenze fra i due gruppi.
La linea dell'ipotesi nulla rappresenta l'ipotesi di partenza, cioè che il trattamento attivo e il placebo determinino effetti uguali.
La linea dell'importanza clinica rappresenta il limite per considerare utile (clinicamente efficace) un intervento.
    a. Differenza statisticamente significativa e clinicamente importante.
    b. Differenza statisticamente significativa, ma clinicamente non importante.
    c. Differenza è statisticamente non significativa e di incerta importanza clinica.
    d.Differenza non statisticamente significativa e clinicamente non importante.

Il potere dello studio e il calcolo della numerosità campionaria
Facciamo ora un esempio: in un articolo gli Autori, nel capitolo metodi, riportano che il loro studio aveva il 90% di probabilità (potere) di riuscire a identificare tra trattamento attivo e placebo una differenza del 40%, che era stata considerata essere clinicamente significativa.
Gli investigatori avevano ricavato da precedenti studi come la frequenza dell'evento nel gruppo di controllo (non in trattamento) risultasse intorno al 10% (p2 =0.10). Su questa base avevano calcolato a priori, prima di iniziare il loro studio, che se avessero riscontrato una riduzione della frequenza dell'evento nel gruppo attivo del 40% o, detto in altri termini, una frequenza nel gruppo in trattamento del 6% (0.06) (p1= 0.10-0.04=0.06), questo sarebbe stato un risultato utile.
Definito R il rapporto fra i due rischi p1/p2 (=6%/10% =0.6) e assumendo di voler avere il 90% di probabilità di identificare tale differenza [(tenendo in considerazione comunque che in ogni caso c'erano < 5% (p<0.05) di possibilità che il risultato fosse falsamente positivo] determiniamo la numerosità campionaria applicando la seguente formula (1). La variabile 10.51 rappresenta una costante per i valori di alfa =0.05 e beta =0.90.

n = 10.51[(R+1) - p2(R2+1)]/ p2(1-R)2

n = 10.51[(0.60+1)-0.10(0.602+1)]/0.10(1-0.60)2 = 961,665 ≈ 962 pazienti per ciascun gruppo.

Se fissiamo dei valori diversi per l'errore alfa e per il potere dovremo modificare l'ampiezza del campione e la costante (Tabella 1): ridurre alfa o aumentare il potere determinano in ambedue i casi un innalzamento del campione richiesto: per esempio una riduzione di alfa da 0.05 a 0.01 (cioè voler diminuire la probabilità dal 5% all'1% di essere giunti a delle conclusioni falsamente positive) comporta un aumento del 70% della numerosità campionaria richiesta al potere = 0.50, del 50% al potere di 0.80; con alfa = 0.05 un incremento del potere da 0.50 a 0.80 richiede il doppio del campione e da 0.50 a 0.99 il quintuplo (Tabella 2).

Tabella I. Relazione fra potere dello studio (1- β) e livelli di alfa

Potere (1-β)


0.80
0.90
0.95
Alfa (errore di tipo I)



0.05
7.85
10.51
13.00
0.01
11.68
14.88
17.82

Sostituire il valore di 10.51 con il valore appropriato ricavato.

Si considerano di solito sufficienti i seguenti limiti: alfa = 0.05 e potere = 0.80.

Tabella 2. Numerosità campionaria approssimativa richiesta per differenti livelli di alfa e di potere

Potere (1-β)




0.50
0.80
0.90
0.99
Alfa (errore di tipo I)




0.05
100
200
270
480
0.01
170
300
390
630
0.001
280
440
540
820

Per complicare le cose
Dobbiamo tener presenti alcuni fattori che possono influenzare il calcolo della numerosità campionaria:
  1. La frequenza degli eventi nel gruppo di controllo viene di regola fornita agli investigatori dai risultati di precedenti studi pubblicati, ma non sempre questi dati sono disponibili; inoltre è necessario tener conto pure degli scenari, criteri di eleggibilità e trattamenti diversi presenti;
  2. il giudizio su cosa si intenda per effetto “clinicamente significativo” è soggettivo, perché per alcuni ricercatori, una riduzione del 10% nella frequenza degli eventi è clinicamente utile, per altri è necessario un limite superiore, diciamo del 20% o del 30%. Tenendo costante la frequenza dell'evento nel gruppo di controllo, per ridurre della metà l'ampiezza dell'evento è richiesto un aumento di 4 X della numerosità campionaria: nell'esempio precedente partendo da una frequenza dell'evento nel gruppo di controllo del 10% e da quella considerata efficacemente utile nel gruppo attivo del 6% (riduzione del 40%), abbiamo calcolato come la numerosità del campione richiesta fosse di circa 965 pazienti per ciascun gruppo. Se ci accontentassimo invece di una frequenza dell'evento inferiore nel gruppo di trattamento, diciamo dell'8% (cioè di una riduzione del 20%), sarebbe richiesto un numero di pazienti 4 volte superiore (4298).

n = 10.51[(R+1) – p2(R2+1)]/ p2(1-R)2

n = 10.51[(0.80+1)-0.10(0.802+1)]/0.10(1-0.80)2 = 4298 per ciascun gruppo.

Molto spesso gli investigatori, specie nel caso di eventi a frequenza rara si trovano a realizzare uno studio che ha un basso potere, arruolando un numero di pazienti molto più ridotto di quello considerato necessario. Anche questo genere di trial comunque ha una sua dignità, perché i suoi risultati possono essere combinati assieme a quelli di altri studi simili in una meta-analisi, dando in questo modo informazioni assai utili (2).

Bibliografia
  1. Shulz KF, Grimes DA. Sample size calculations in randomised trias: mandatory and mystical. Lancet 2005;365:1348-53.
  2. Chalmers TC, Levin H, Scks HS, Reitman D, Berrier J, Nagalingam R. Meta-analysis of clinical trials as a scientific discipline, I: control of bias and comparison with large co-operative trials. Stat Med 1987;6:315-28.

Vuoi citare questo contributo?

D. Radzik Specchio specchio delle mie brame...dimmi quanti pazienti dovrò arruolare?. Medico e Bambino pagine elettroniche 2006;9(7) https://www.medicoebambino.com/?id=PDS0607_10.html

Copyright © 2019 - 2019 Medico e Bambino - Via S.Caterina 3 34122 Trieste - Partita IVA 00937070324
redazione: redazione@medicoebambino.com, tel: 040 3728911 fax: 040 7606590
abbonamenti: abbonamenti@medicoebambino.com, tel: 040 3726126

La riproduzione senza autorizzazione è vietata. Le informazioni di tipo sanitario contenute in questo sito Web sono rivolte a personale medico specializzato e non possono in alcun modo intendersi come riferite al singolo e sostitutive dell'atto medico. Per i casi personali si invita sempre a consultare il proprio medico curante. I contenuti di queste pagine sono soggetti a verifica continua; tuttavia sono sempre possibili errori e/o omissioni. Medico e Bambino non è responsabile degli effetti derivanti dall'uso di queste informazioni.

Unauthorised copies are strictly forbidden. The medical information contained in the present web site is only addressed to specialized medical staff and cannot substitute any medical action. For personal cases we invite to consult one's GP. The contents of the pages are subject to continuous verifications; anyhow mistakes and/or omissions are always possible. Medico e Bambino is not liable for the effects deriving from an improper use of the information.